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Abstract: This paper is concerned with the global robust stability problem for linear delayed 
differential systems with uncertainties by using an event-triggered sliding mode control. First, a 
sliding mode control with event triggering scheme and the estimations of the practical sliding band 
which the trajectory remains at last are provided. Then Zeno phenomenon for proposed 
event-triggered scheme is excluded in this paper. At last, a numerical example is given to illustrate 
the effectiveness of our results. 

1. Introduction 
Event-triggered control strategy gains more and more attention since it can improve the control 

efficiency and reduce the burden of communication or actuation in control process. It does not 
update in a periodic manner which is the way in the classical sampled data system. There have been 
a lot of research literature studying the event-triggered control, see [1]–[5]. Most of these literature 
investigate the systems without uncertainties since the uncertainties may influence the performance 
of the event-triggered control [6]. 

Sliding mode control (SMC) is an effective robust control strategy for hybrid or uncertain 
systems. It utilizes a discontinuous control to force the state trajectories of the system to some 
specific sliding surfaces. The sliding mode control has been applied to uncertain systems [7], 
time-delay systems [8], fuzzy systems [9], [10] and so on. Therefore sliding mode control with 
event-triggered strategy has been studied recently [11]–[13]. Since the event-triggered control 
strategy is a discrete control scheme, it is not possible for the system to be in ideal sliding mode, 
which means the trajectory can only remain in the vicinity of sliding manifold. [13] introduced the 
definition of practical sliding mode and proposed a global event-triggering sliding mode control for 
a linear time-invariant system. 

In this paper, implementation of SMC with the event-triggering strategy for a linear delayed 
differential system. To the best of our knowledge, there has been no result of such research and it 
still remains chanllenging. The main contribution of this paper are highlighted as follows: 1) The 
system model we investigate is very comprehensive that it contains time delays, exogenous 
disturbance as well as event-triggered sliding mode control. 2) An event-triggered sliding mode 
control is designed effectively for the linear delayed differential system to force the trajectories to 
remain in a vicinity of the sliding manifold. 3) Zeno phenomenon is excluded under some sufficient 
conditions. 

This paper is organized as follows. In Section 2, we give the formulates the problem of event- 
triggered robust sliding mode control for linear delayed differential systems with exogenous 
disturbance and introduce some basic definitions and lemmas. In Section 3, the main results are 
presented where criteria about the trajectory is attracted towards the sliding manifold and stays 
within a band are established. Then a numerical simulation for illustrating the theoretical results is 
given in Section 5, following by conclusions in Section 6. 

Notations: n
 and m n×


 denote the n -dimensional Euclidean space and the set of m n×  real 

matrices, respectively. [0, )+ = ∞

. mI  represents the identity matrix of order m . For a real 
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symmetric matrix B , max ( )Bλ  ( min ( )Bλ ) denotes the maximum (minimum) eigenvalue of B . A 
function :γ + +→ 

 is a  -function if it is continuous, strictly increasing and (0) 0γ = ; it is a 

∞ -function if it is a  -function and also ( )sγ →∞  as s →∞ . 

2. Problem Formulation 
In this section, we state the problem formulation and present some necessary preliminaries. 

Consider the following linear delayed differential system with delay 

            0 0( ) ( ) ( ) ( ( ) ( )), ( )x t Ax t x t B u t d t x x tα t= + − + + = ,                 (1) 

where ( ) nx t ∈  and ( )u t ∈  represent the state of the system and the control input, respectively. 
τ  denotes the delay of the system, ( )d t ∈  is an unknown exogenous disturbance but bounded for 
all time, that is, 

0

maxsup | ( ) |
t t

d t d
≥

≤ , n nA ×∈ , nB∈  and α ∈ . 

The sliding variable is designed as ( ) ( )Ts t c x t=  for nc∈ . Define the sliding manifold as 

                             { | 0}n Tx s c x∈ = =  ,                         (2) 

where 1[ ,1]T Tc c=  with 1
1

nc −∈ . Our purpose is to bring the trajectories of the delayed 
differential system (1) to the sliding manifold in finite time and the state is forced to stay there for 
all time. In view of (1) and (2), we have 

( ) ( ) ( ) ( ) ( )T T T Ts t c Ax t c x t c Bu t c Bd tα t= + − + + .                    

Now we give a useful definition and two lemmas. 
Definition 1. [13] Let 0( , )x t x  be the trajectory of the system starting from initial condition 

0 0 0( , ( ))x x t x t=  and 0t t> . Consider the sliding manifold given by  . The system is said to be in 
practical sliding mode if, given any positive constant ∆ , there exists a finite time 1 0[ , )t t∈ ∞  such 
that the system trajectories reach the region in the vicinity of the sliding manifold   bounded by 
∆  in time 1t  and remain there for all time 1t t≥ . The region in the vicinity of the sliding manifold 
where the system trajectories are confined is called practical sliding band. The practical sliding 
mode is called ideal sliding mode if 0∆ = . 

Lemma 1 (Halanay inequality). [14] Let ( )w t  be a nonnegative function defined on the interval 
0[ , )t t− ∞ , and be continuous on the subinterval 0[ , )t ∞ . If there exist two positive constants ξ , η  

satisfying ξ η>  such that 0( ) ( ) ( ),w t w t w t t tξ η t≤ − + − ≥ . Then 0

0 0

( )

[ , ]
( ) sup ( ) t t

t t
w t w e γ

θ t
θ − −

∈ −
≤ , 0γ >  is 

the smallest real root of the equation 0eγτξ γ η− − = . 
Lemma 2. 0α β+ > , 0γ > , 0δ > , 0d > . Let 0:[ , )g t +∞ →

 satisfy the following delayed 
differential inequality 

                      0( ) ( ) ( ) , [ , )g t g t g t t tα β t g≤ + − + ∈ ∞ .                   (3) 

Then we have 

                 0

0 0

( )( )
0

[ , ]
( ) sup ( ) , [ , )[ ] t t

t t
g t g e t tα β

θ t

gg θ
α β α β

+ −

∈ −
≤ + − ∈ ∞

+ +
.         (4) 

Proof. Claim that 0

0 0

( )( )

[ , ]
[ sup ( ) ] t t

t t
y y e α β

θ t

γ γθ
α β α β

+ −

∈ −
= + −

+ +
 is a solution of the delayed differential 

equation 

                  
0

[ , ]
( ) ( ) sup ( ) ,

t t t
y t y t y t t t

t
α β t γ

∈ −
= + − + ≥

                       (5) 
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with the initial condition ( ) ( )y t g t= , 0 0[ , ]t t tt∈ − . To prove the claim, we check that 

0

0 0

( )( )

[ , ]

[ , ]

( ) ( )[ sup ( ) ,

sup ( ) ( ).

] t t

t t

t t

y t y e

y y t

α β

θ t

θ t

γα β θ
α β

θ

+ −

∈ −

∈ −

= + +
+

=

                           

Compared with (5), we conclude that 0

0 0

( )( )

[ , ]
[ sup ( ) ] t t

t t
y y e α β

θ t

γ γθ
α β α β

+ −

∈ −
= + −

+ +
 is indeed a solution 

of (5). According to [14], we have 0

0 0

( )( )

[ , ]
( ) ( ) ( )[ sup ( ) ] t t

t t
g t y t y e α β

θ t

gα β θ
α β

+ −

∈ −
≤ = + +

+
 

The proof is complete. 

3. Main Results 
In this section, the main results of the paper on the event-triggered sliding mode control for the 

delayed differential system (1). The paper [13] introduced a triggering scheme for a linear 
time-invariant system to be globally robustly stable. In this paper, assume that 0{ }i it ∞

=  
0( 0)t =  is the 

event-time sequence and we propose similarly as follows: 

              1 inf{ : ( ) ( ( ) )}i i it t t c A e t x tσ β+ = > ≥ +‖‖‖‖‖ ‖ ‖ ‖ ,              (6) 

for any given (0, )β ∈ ∞  and (0,1)σ ∈ . Define the error ( ) ( ) ( )ie t x t x t= −  with ( ) 0ie t =  for 

1[ , )i it t t +∈ . From (6), it is clearly to know that this event-triggering time sequence is dependent on 
the sampled state and we will show that under this global triggering scheme, the trajectories of the 
state remain bounded within a sliding band in the vicinity of the sliding manifold (2). The 
event-triggered sliding mode control is defined as 

1
1( ) ( ) ( ( ) ( ( ))sign( )), [ , )T T

i i i i iu t c B c Ax t K x t t t t t−
+= − + ∈ ,           (7) 

where sign  denotes the signum function and the gain K  is a function of ( )ix t  which is 
sampled at every event-triggering instants it , i∈ . Now we are in the position to give the 
following theorem to see the system in practical sliding mode. 

Theorem 1. Consider the delayed differential system (1) based on the event-triggered strategy (6) 
and control law (7). Then if ( ( ))iK x t  is designed as 

             
0

1( ( )) sup | | ( ) ( ( ) ), ( )(| | )T
i i

t
K x t c B d t x t c

A
µ β µ α η s

≥
> + + > + + +‖ ‖ ‖‖

‖‖
,    (8) 

the trajectory will remain within a band 

 ( ) 1
0{ :| | ( ) }, , 0.n T

ix c x x t A t t ηβ −∈ ≤ + ∀ ≥ > ‖ ‖ ‖‖                     (9) 

Proof. Construct the following Lyapunov function 2( ) ( ) / 2V t s t= . Calculate the derivative of 
( )V t  along the trajectory of system (1), from the fact that ( ) ( ) ( )ie t x t x t= − , we have 

2 2
max

( ) ( ) ( ) ( ) ( ) ( ) ( ( ))sign( ( )) ( ) ( )
| | | || ( ) || ( ) | ( ) ( ) ( ) ( ( ))sign( ( )) | ( ) || |
2 2

T T
i i

T T
i i

V t s t c Ae t s t s t s t K x t s t s t c Bd t

s t c Ae t s t s t s t K x t s t n s t c B d

a t
aa  t

= + − − +

≤ + + − − +



. 

In view of the event-triggering scheme, we note that 

| ( ) | ( ) ( ( ) )T
ic Ae t c A e t x tσ β≤ ≤ +‖‖‖‖‖ ‖ ‖ ‖ .                (10) 

If the trajectories of the system start from the region where sign( ( )) sign( ( ))is t s t= , then from (8) 
it can be derived that 
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2 2

max
2 2

| | | |( ) ( ( ) ) | ( ) | ( ) ( )
2 2

| ( ) | ( ( )) | || ( ) |
| | | |( )( ( ) ) | ( ) | ( ) ( ).
2 2

i

T
i

i

V t x t s t s t s t

s t K x t c B s t d

x t s t s t s t d

aa s β t

aa ms  β

≤ + + + −

− +

≤ − − + + + −

 ‖ ‖

‖ ‖

          (11) 

Now we claim that 
1| ( ) | ( )( ( ) )is t c A x t β−≤ + +‖‖‖‖ ‖ ‖ .                      (12) 

If (12) is not correct, then we have 
1

1 1
( )( ( ) ) | ( ) | ( ) ( ( ) ( ) )

( ) ( ) ,
i i

i

c A x t s t c x t c x t e t
c A x t A

β
ss β

−

− −
+ + < ≤ ≤ +

≤ + +
‖‖‖‖ ‖ ‖ ‖‖‖ ‖ ‖‖‖ ‖‖ ‖

‖‖ ‖‖ ‖ ‖ ‖‖
                  

which is a contradiction. Thus we know (12) is correct. It then follows from (11) and the 
condition (8) that 2 2| | | |( ) ( ) ( ) ( ).

2 2
V t s t s t dα αη≤ − + + −  According to Lemma 1, we obtain that as long 

as sign( ( )) sign( ( ))is t s t= , 

( )

[ , ]
( ) sup ( ) i

i i

t t

t t
V t V e κ

θ t
θ − −

∈ −
≤ ,                        (13) 

where 0κ >  is the smallest real root of the equation | | | | 0
2 2

eκτα αη κ+ − − = , which means that 

the trajectories decrease before the sign of ( )s t  changes. The decrement of ( )V t  cannot be 
guaranteed since zero crossing of occurs. However, when the system is triggered at the time 
sequence 0{ }i it ∞

= , sign( ( )) sign( ( ))is t s t=  hold, i∈ . Therefore there exists a practical sliding band 
such that ( )V t  decrease outside the region and sign( ( )) sign( ( ))is t s t≠  in the region. Now we 
analyze the the size of the band, that is, the maximum deviation of sliding trajectory with zero 
crossing. The region is derived as follows 

( ) 1| ( ) ( ) | | ( ) ( ) | ( ) )T T
i i is t s t c x t c x t c e x t Aβ −− = − ≤ ≤ +‖‖‖‖ ‖ ‖ ‖‖ . 

Then the maximum deviation of sliding trajectory can be obtained for the case | ( ) | 0is t = , which 
yields (9). The proof is completed. 

Now we study the boundedness of trajectories of the closed-loop system. 

Let 1 2( ) [ ( ) , ( )]T Tx t x t x t= , 11 12

21 22

A A
A

A A
 

=  
 

, 2[ , ]TB B= 0 ,where 1
1

nx −∈ , 2x ∈ , 1 1
11

n nA − × −∈ , 

1 1
12

nA − ×∈ , 1 1
21

nA × −∈ , 22A ∈ , 1n−∈0 
, 2B ∈ .Then we rewrite the system (1) in regular form: 

1 11 1 12 2 1

2 21 1 22 2 2 2 2

( ), (14)
( ) ( ) ( ). (15)

x A x A x x t
x A x A x x t B u t B d t

α t
α t

= + + −
= + + − + +





 

The following theorem shows that the ultimate boundedness of the trajectories. 
Theorem 2. Consider the system (14) based on the event-triggered strategy (6) and control law 

(7). ( ( ))iK x t  is still designed as (8) and 11 12 1 ( 1)TA A c Iα− + +  is Hurwitz. Then the trajectories of the 
system remain ultimately bounded in the region given as 

1 12 12
1 1 1

min min

( )|
( )( ( ) 1)

{ }n ix tA PAx x
P P Q A

β
λ λ

−
−

+
Ω = ∈ ≤

+


‖ ‖‖ ‖
‖ ‖

‖‖
,            (16) 

where P  and Q  are positive definite matrices satisfying 

11 12 1 11 12 1( ) ( ) 2( 1) .T T TA A c P P A A c P Qα− + − + + = −  

Proof. According to Theorem 1, we know that the system enters into the sliding band given by 
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(9). Then we have ( ) 1
2 1 1 ( )T

ix c x x t Aβ −≤ − + +‖ ‖ ‖‖ . We construct the Lyapunov function 

1 1( ) ( ) ( ).TV t x t Px t=  Compute the derivative of V (t) along the system trajectories of (14) 
1

1 11 11 12 1 1 12 1 1 12

1 1 1 1
1 2 2

min 12 12
2

12 12

[ , ]

( ) ( ) ( ) 2 ( ( ) )
( ) ( ) ( ) ( )

[ ( ) 1] ( ) ( ) ( ( ) )
( ( ) )sup ( )

(
[

i i

T T T T T
i

T T

T
i

i

t t

V t x A P PA PA c c A P x t x PA x t A
x t Px t x t Px t

P Q V t V t A PA x t A
A PA x tV

θ t

β
α t t α
λ α α t β

βθ

−

− −

∈ −

≤ + − − + +
+ − − +

≤ − + + + − + +
+

≤ −

 ‖ ‖ ‖‖

‖ ‖‖ ‖ ‖‖
‖ ‖‖ ‖ 1

min

2
( ( ) 1)( ) 12 12

1 2 1 2
min min

( ( ) ) .
( ) 1) ( ( ) 1)

] iP Q t t iA PA x te
P Q A P Q A

λ β
λ λ

−− + −
− −

+
+

+ +
‖ ‖‖ ‖

‖‖ ‖‖

 

Therefore 
2

12 12
1 2

min

( ( ) )( )
( ( ) 1)

iA PA x tV t
P Q A

β
λ −

+
≤

+
‖ ‖‖ ‖

‖‖
, which yields that 

12 12
1 1

min min min

( )1( ) ( )
( ) ( )( ( ) 1)

ix tA PAx t V t
P P P Q A

β
λ λ λ −

+
≤ ≤

+
‖ ‖‖ ‖

‖ ‖
‖‖

. 

The proof is complete. 
As is well known, for a given initial condition, if the updating times of the controller converge to 

a finite constant, the event-triggered scheme induces undesired accumulation of event instants, Zeno 
phenomena. Now we prove that the Zeno behaviors are excluded in this paper.  

Theorem 3. Consider system (1). 1{ }i it ∞
=  is the event-triggering time sequence generated by the 

triggering rule (6). If the conditions of Theorem 1 hold, then the time interval between any two 
consecutive event triggering instants has a lower bound *T  given as follows 

* ( ( ) )(| | )1 ln 1
| | ( ( ( )) )

[ ]i

i

x t AT
A c A x t

σ β α
α φ ς

+ +
≥ +

+ +
‖ ‖ ‖‖

‖‖ ‖‖‖‖
,               (17) 

where 1( ( )) | | (| ( ( )) | ( ) )T
i i ix t c B B K x t c A x tφ −= +‖ ‖ ‖‖‖‖‖ ‖ , maxB dς =‖ ‖ . 

Proof. Consider { [ , ) : ( ) 0 }it t x ttΣ = ∈ − ∞ =‖ ‖ . For all 1[ , )i it t t +∈ Σ , we have 

1
max

( ) ( ) | | ( ) | | (| ( ( )) | ( ) )
( ) | | ( ) ( ( )) .

T
i i

i

d e t A x t x t c B B K x t c A x t B d
dt
A x t x t x t

a t
a t φ ς

−≤ + − + + +

≤ + − + +

‖ ‖
‖‖‖ ‖ ‖ ‖ ‖ ‖ ‖‖‖‖‖ ‖‖ ‖

‖‖‖ ‖ ‖ ‖
 

Then according to Lemma 2, we obtain [ , 1)i it t t∈ +  

(| | )( )

[ , ]

(| | )( )

( ( )) ( ( ))( ) ( ) ( ) sup ( ) ( )
| | | |

( ( )) 1 .
| |

[ ]
[ ]

i

i i

i

A t ti i
i i

t t

A t ti

x t x te t x t x t x e x t
A A

x t e
A

α

θ t

α

φ ς φ ςθ
α α

φ ς
α

+ −

∈ −

+ −

+ +
≤ + ≤ + − +

+ +
+

≤ −
+

‖ ‖

‖ ‖

‖ ‖ ‖ ‖‖ ‖ ‖ ‖ ‖ ‖
‖‖ ‖‖

‖‖

 

Note that there exists a minimum time interval for the error ( )e t‖ ‖  from 0 

to 1 1( ( ) )ix t c Aσ β − −+‖ ‖ ‖‖‖‖ . Thus we have (| | )( ( ) ) ( ( )) 1 ,
| |

[ ]A Ti ix t x t e
c A A

ασ β φ ς
α

++ +
≤ −

+
‖ ‖‖ ‖

‖‖‖‖ ‖‖
which yields the 

lower bounded of the event-triggering time interval. The proof is complete. 

4. A Numerical Example 
In this section, we give an example to illustrate the effectiveness of the obtain results. Consider 

the following delayed differential system. 
0 3 0

( ) ( ) 0.5 ( 0.05) ( ( ) 0.2sin(5 )).
4 7 1

x t x t x t u t t   
= − − + +   
   



          (18) 

Here we define the sliding variable as ( ) ( ) [0.5 1] ( )Ts t c x t x t= = . The gain function is defined 
as 1 2( ( )) ( )i iK x t K K x t= + ‖ ‖.The parameters are chosen as 0.5β = , 0.85σ = , 1 1.5K = , 2 3K = . The 
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initial value is chosen as 0 [5 6]Tx = . It can be derived that the gain condition (8) is satisfied. From 
the Theorem 1, the trajectory remains within a band and from Theorem 2 and the time interval 
between any two consecutive event triggering instants has a positive lower bound. 

 
For simulation purpose, let the time interval be [0, 8s] and the step be 0.00125s. The simulation 

results for the delayed differential system with event-triggered sliding mode control are shown in 
Figure 1-4, which illustrate the performance of the global event-triggered sliding mode control. 
Figure 1 shows that the trajectory is attracted towards the sliding manifold S and stays within the 
practical sliding band which is dependent on the state. Figure 2 shows the dynamic behavior of 

1( )x t  and 2 ( )x t  with respect to time. The event-triggered sliding mode control is shown in Figure 3. 
Figure 4 shows that the interval between any two consecutive event-triggered time is lower bounded 
by a positive quantity, which is in accordance with Theorem 2. 

 

5. Conclusion 
This paper has been investigated the global robust stability problem for linear delayed 

differential systems with uncertainties by using an event-triggered sliding mode control. A sliding 
mode control with event triggering scheme and the estimations of the practical sliding band which 
the trajectory remains at last have been provided. Then we have excluded Zeno phenomenon for 
proposed event-triggered scheme in this paper. At last, a numerical example has been given to 
illustrate the effectiveness of our results. 
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